An interferometric-based optical read-out for the LISA Proof-Mass

Clive Speake, S.Aston and A.Freise University of Birmingham

6th International LISA Symposium, Goddard Space Flight Center, 21st June 2006

Presentation Overview

- Motivation
- A new homodyne Interferometer
 - Design concept
 - > Homodyne fringe interpolation
 - > VCSEL laser diode characteristics
 - Current experimental set-up
- Sensitivity results
- Summary and future work

Motivation

Our *goal* is to improve LISA's low frequency sensitivity to enable the study of massive binary black hole coalescences.

Design principles

- ➤ To ensure good low frequency stability we avoid active parts that generate heat, that can age, thermally expand, have hysteresis...
- We aimed for a compact design with as few components as possible
- Interferometer should be as insensitive to tilt as possible to ensure that the sensor is robust against proof mass rotation
- Final design is a development of work done at NPL(UK) (Downs et al. 1984) and also Greco et al 1995

Starting concept: Hybrid retroreflector.

Standard use of cube-corner retroreflector for measurement arm of interferometer to avoid sensitivity to angular motion of target mirror.

Hybrid retroreflector is incorporated symmetrically into both arms of Michelson interferometer.

- Make outputs interfere by resolving polarisations along 45^o direction.
- Or use half-wave plate at 22.5°.

Fringe interpolation method:

- Fringe intensities I_2 , I_3 are 90° out of phase.
- Motion of target mirror generates a circular Lissajous figure with I_2 , I_3 plotted as v_x , v_v .

N is number of photons per second on detector.

The VCSEL laser diode

- Use VCSEL laser diode (Avalon Photonics AVAP-850SM) with pure monomode output over working range. No mode hops and no mode partition noise
- Operates at 850nm, 0.3-1mW

The VCSEL laser diode

- ➤ Current tuning 0.3nm/mA with range of 1nm.
- ➤ Temperature sensitivity 0.06nm/K.

The current experimental set-up

Prototype (40x70x25mm).

- •Titanium base.
- UV bonded optics.

The current experimental set-up

- Interferometer installed within a bell jar vacuum vessel on-top of a passively damped optical bench:-
- ➤ Rotary vacuum pump achieves 10⁻³ torr (0.1 Pa).

The current experimental set-up

- > Two methods for determining target mirror armlength compared with reference armlength.
- Incremental phase measurement: Simply add consecutive incremental changes $\Delta \phi$. Not robust against power shut-down or target mirror motion fast enough such that we don't sample the Lissajous figure more than twice per revolution. Sensitivity is in excess of what is required.
- **Absolute interferometry:** Measure $\Delta \phi$ change induced by modulation of wavelength, δλ. Sensitivity is reduced by ratio $\lambda / \delta \lambda \sim 850$.

Incremental phase measurement

Results

- High frequency (f >10 Hz) sensitivity 10⁻¹³ m/Hz^{1/2} limit set by ADC noise (16-bit 50kHz sampling)
- Shot noise limit for 0.2μW is 10⁻¹⁴ m/Hz^{1/2}
- ➤ Medium frequency range (10⁻² Hz < f <10 Hz) 1/f noise from input electronics noise.
- Low frequency noise determined by differential thermal expansion in interferometer armlengths
- Wavelength noise at present is suppressed by symmetry of arms (~10μm)
- Preliminary results from absolute interferometry are also limited by thermal expansion. No sensitivity to change in quasi-dc wavelength

Future development

- ➤ Temperature stabilise VCSEL.
- ➤ Develop monolithic interferometer with 3 fringe outputs using silicate bonding techniques. Centring Lissajous pattern by subtracting offsets gives phase readout independent of intensity of laser.

- > Pursue both absolute and incremental fringe counting methods
- ➤ Realise a robust optical readout for inertial control with goal sensitivity of 10⁻¹¹mHz^{1/2} over extended LISA sensitivity band.

Acknowledgements:

- PPARC ITF
- Members of Working Group 2